
Into ImgLib—Generic Image Processing in Java

Stephan Preibisch, Pavel Tomančák, and Stephan Saalfeld

Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108,
Dresden, Germany

ABSTRACT

The purpose of ImgLib, a Generic Java Image Processing Library, is to provide an abstract framework enabling
Java developers to design and implement data processing algorithms without having to consider dimensionality,
type of data (e. g. byte, float, complex float), or strategies for data access (e. g. linear arrays, cells, paged cells).
This kind of programming has significant advantages over the classical way. An algorithm written once for a
certain class of Type will potentially run on any compatible Type, even if it does not exist yet. Same applies for
data access strategies and the number of dimensions.

We achieve this abstraction by accessing data through Iterators and Type interfaces. Iterators guarantee
efficient traversal through pixels depending on whether random coordinate access is required or just all pixels
have to be visited once, whether real or integer coordinates are accessed, whether coordinates outside of image
boundaries are accessed or not. Type interfaces define the supported operators on pixel values (like basic algebra)
and hide the underlying basic type from algorithm implementation.

Keywords: imglib, generic programming, image processing, java, fiji

1. INTRODUCTION

Advanced image processing tasks require implementation of complex algorithms. At the same time, the rising
amount and shear size of n-dimensional (2d, 3d, 4d, and more) image data requires intelligent strategies for
storage (e. g. in memory, paged on disc, distributed over the net) and data access (e. g. iteration, random access).
Moreover, diverse imaging modalities generate a multitude of pixel types (e. g. wavelength, frequency spectra,
labels, orientation histograms) at various precisions (e. g. 1-bit boolean, 8-bit unsigned integer, 32-bit signed
float). ImgLib aims at separating algorithm development from core design: storage, access, and pixel operators.
Algorithm developers can focus on the core of the algorithm exclusively, i. e. he/she has to implement the
algorithm once and it will run on any compatible pixel type, number of dimensions, and independently of how
the data is stored. Another benefit is the more concise source code compared to classical implementations. It is,
therefore, easier to understand the essence of the algorithms while low level access is optimized at the level of
Types, Cursors, and Containers.

2. DESIGN

To achieve dimension, storage, and type independence, we employ four major abstraction levels. Figure 1
visualizes these basic levels of abstraction and, by that, outlines the major design principles. The complete
source code can be accessed via gitweb http://pacific.mpi-cbg.de/cgi-bin/gitweb.cgi?p=imglib.git.

1. Types define the abstraction layer for supported data types, that is, the values single pixels can store.
Inheritance hierarchies allow to implement algorithms for certain subgroups (e. g. ComparableType) or in-
dividual Types (e. g. FloatType). The leafs of this inheritance tree are final implementations that guarantee
maximal performance for the supported operations and minimize the required storage space (e. g. 1-bit
boolean, 12-bit unsigned integer). Types define to which and to how many bits of a Java basic type they

Further author information: (Send correspondence to S.P. or S.S.)
S.P. E-mail: preibisch@mpi-cbg.de Telephone: +49 351 210-2758
P.T. E-mail: tomancak@mpi-cbg.de Telephone: +49 351 210-2670
S.S. E-mail: saalfeld@mpi-cbg.de Telephone: +49 351 210-2753

http://pacific.mpi-cbg.de/cgi-bin/gitweb.cgi?p=imglib.git


Container
(Manage Storage Logic)

 

Store the image data and grant access to the raw values 
(Java basic types) of the current pixel for the Types

Cursors
(Manage Location Logic)

 

Optimized movement to locations in the image, 
depending on the type of Container

Types
(Manage Computational Logic)

 

Define the type of each pixel from raw values (Java basic types)
and define supported operations

Image
(View on the image data)

 

Central instance managing interaction
between Container, Cursors and Types

Knows the raw type 
and can access the
current pixel

Transfers the container
invariant address of the 
current pixel location

Knows all properties of the Container
to optimally reach any pixel location

Creates Creates

Creates

Figure 1. Visualization of the four major abstraction levels Type, Cursor , Container , and Image.

are mapped for storage. Currently, ImgLib provides a selection of commonly used numeric types cover-
ing the Java basic types, unsigned integers, complex numbers and booleans. Additional types for special
purpose algebras are easy to implement (e. g. base pairs, labels, compounds).

2. Cursors are used to address certain pixel locations in the image independently of the Type. Cursors are
implemented for each Container and, therefore, completely abstract the addressing of pixel locations from
the actual implementation of algorithms. Cursors differ in terms of their flexibility to move, whereas
higher flexibility results in lower performance. There are two main classes of Cursors: Iterators and
Random Access Cursors. Specialized Cursors (e. g. Iterators for local neighborhoods) simplify standard
operations in algorithm design.

3. Containers implement in which order the data fragments that represent one pixel (Type) are stored, how
they are fetched, generated, and/or potentially cached. Cursors define how to reach a certain location and
the order of iteration but they are not aware of the Type. For the Type, the Container provides access
to the actual data at the current location whereas the Type itself is unaware of both the Container and
the Cursor. Subsuming, Cursors define the location and Types the value of a pixel, Containers implement
the logic that connects both. ImgLib currently provides linear arrays, a multi-cell container, a generative
vector container that creates pixels from Java AWT shapes, and a legacy ImagePlus container that allows
running an ImgLib algorithm on an existing ImagePlus instance.

4. Images are the central instances that link Containers, Cursors, and Types and provide a view to the data.
An Image is instantiated by the developer providing Factories that define which Container and Type to
use. Cursors are created by the Image upon demand propagating the request to the Container. That way,
the Container implicitly defines which Cursors have to be used.

Higher level concepts build on top of these basic layers of abstraction. E. g. random access strategies at coor-
dinates that might be outside of image boundaries are implemented through Cursors that map such coordinates
to a defined location inside the Image (e. g. periodic, mirror, boundary extension) and/or perform operations on
the Type level (e. g. constant values, fading). Random access at real coordinates is realized through Interpolators
(e. g. nearest neighbor, linear) that perform Type operations in a defined integer neighborhood that, again, is
iterated using Cursors. That way, both out of boundary access as well as interpolation serve as examples of ba-
sic algorithms whose implementation is independent of data storage, type, and dimensionality with the optional
requirement that the Type implements a set of required operations.



3. USAGE

To instantiate an Image, one can load an Image, create an Image of a certain Type or create a new Image
based on an existing instance which will have the same Type. To load or create an Image, one has to define the
Container that defines in which way memory is allocated. Once an Image is instantiated, the algorithm accesses
the pixels using appropriate Cursors and calculates using the operations provided by the Type. The following
example code opens and image, iterates all pixels and adds an increasing number to each pixel.

// define T as some RealType in this method

public <T extends RealType<T>> void example() {
// open the image and use an CellContainer with cell size 4× 4× . . . 4 to store it

Image<T> image = LOCI.openLOCI("img.tif", new CellContainerFactory(4));

// call the generic method to add some values to it

addValues(image);

}
public <T extends RealType<T>> void addValues(Image<T> image) {

// create cursor

final Cursor<T> c = image.createCursor();

// create variable of same type and set to one

final T type = image.createType();

type.setOne();

// iterate over image

while (c.hasNext()) {
// move iterator forward

c.fwd();

// add the value of type to the current pixel value

c.getType().add(type);

// increase type

type.inc();

}
// close the cursor

c.close();

}

Note that the generic method addValues(Image<T> image) in this example works for any Image that contains
pixels with real values, independent of the dimensionality of the Image or the Container that is employed. The
next example creates a new Image whose pixels are of FloatType (32-bit signed floating point) and calls the same
method to highlight the generic properties.

public void example() {
// create an Image of FloatType with an ArrayContainer to store it

ImageFactory<FloatType> factory =

new ImageFactory<FloatType>(new FloatType(), new ArrayContainerFactory());

Image<FloatType> image = factory.createImage(new int[]{10, 10, 10});
// call the generic method to add some values to it

addValues(image);

}

The implementation is independent of the Container whereas, in this example, the order of iteration has an
effect on the result. That is to highlight that basic iteration is optimal in terms of the Container but does not
guarantee any particular order. However, for many applications (e. g. estimating min and max, averaging), the
order of iteration is irrelevant.

Images can be displayed through ImageJ,1 either as ImageJ virtual stacks or by copying the content into
a new ImageJ ImagePlus instance. Displaying Images as virtual stacks should be preferred as it requires no
duplication of data. Both displays can show an arbitrary subset of image dimensions in arbitrary order (e. g. y,
xy, xyz, zxy, txy) which offers a very elegant and fast way to display images in different orientations.



public <T extends RealType<T>> void example() {
// open a 3-dimensional image using ImageJ

ImagePlus imp = new Opener().openImage("image.tif");

// create an Image on top of an existing ImagePlus instance

Image<T> img = ImagePlusAdapter.wrap(imp);

// reset min and max of the display

img.getDisplay().setMinMax();

// display as Virtual Stack

ImageJFunctions.displayAsVirtualStack(img).show();

// display by copying into a new ImagePlus instance, the stack will be displayed

// in the order z,x,y as defined by the id’s of the dimensions {2,0,1}
ImageJFunctions.copyToImagePlus(img,new int[]{2,0,1}).show();

}

For algorithm development with ImgLib, we suggest using the Eclipse IDE for Java Developers (JDT) (http:
//www.eclipse.org/downloads/) and a Java 6 JDK (http://www.oracle.com/technetwork/java/javase/downloads/
index.html). Required libraries are:

1. ImgLib (imglib.jar, included in Fiji http://pacific.mpi-cbg.de/)

2. LOCI Bioformats library standalone for import of images (bio-formats.jar, http://www.loci.wisc.edu/ome/
formats-download.html)

3. Fiji/ImageJ (ij.jar, included in Fiji http://pacific.mpi-cbg.de/)

4. Transformation Package (mpicbg .jar, included in Fiji http://pacific.mpi-cbg.de/)

5. FFT Package (edu mines jtk.jar, included in Fiji http://pacific.mpi-cbg.de/)

The source code of ImgLib can be downloaded from the public GIT repository ssh://contrib@pacific.

mpi-cbg.de/srv/git/imglib.git. Example projects, code templates and other workshop material is available
on-line at http://fly.mpi-cbg.de/imglib-workshop/.

4. CONCLUSIONS

We introduced ImgLib, a state-of-the-art generic image processing framework for the Java programming language
that enables developers to implement algorithms independently of the number of dimensions, data type and the
way the data are stored. For Java, this is the first framework that targets this level of generality, whereas basic
design principles are similar to ITK2 and Vigra3 which are powerful generic image processing frameworks for
C++.

ImgLib has been tested in complex applications. It serves as the image processing library for our software
for reconstructing multi-angle long-term time-lapse acquisitions imaged with the selective plane illumination
microscope.4,5 ImgLib has proven to be capable of reliable and fast processing data sets of up to 0.5 terabytes.
Together with the development team of LOCI Bioformats http://www.loci.wisc.edu/software/bio-formats, we
are working to incorporate ImgLib as the basis for the new NIH-funded ImageJ2 http://imagejdev.org/, under-
lining the potential impact of the framework.

ACKNOWLEDGMENTS

Stephan Preibisch and Stephan Saalfeld were supported by a DIGS-BB PhD stipend. We thank Johannes
Schindelin, the LOCI team, in particular Curtis Rueden and Grant Harris, and Larry Lindsey for their support
and valuable discussion.

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://pacific.mpi-cbg.de/
http://www.loci.wisc.edu/ome/formats-download.html
http://www.loci.wisc.edu/ome/formats-download.html
http://pacific.mpi-cbg.de/
http://pacific.mpi-cbg.de/
http://pacific.mpi-cbg.de/
ssh://contrib@pacific.mpi-cbg.de/srv/git/imglib.git
ssh://contrib@pacific.mpi-cbg.de/srv/git/imglib.git
http://fly.mpi-cbg.de/imglib-workshop/
http://www.loci.wisc.edu/software/bio-formats
http://imagejdev.org/


REFERENCES

[1] Rasband, W., “ImageJ: Image processing and analysis in Java [version 1.44e].”

[2] Ibanez, L., Schroeder, W., Ng, L., and Cates, J., The ITK Software Guide. Kitware, Inc. ISBN 1-930934-15-7,
http://www.itk.org/ItkSoftwareGuide.pdf, second ed. (2005).

[3] Koethe, U., Generische Programmierung für die Bildverarbeitung, PhD thesis, Universität Hamburg (2000).

[4] Huisken, J., Swoger, J., Bene, F. D., Wittbrodt, J., and Stelzer, E. H. K., “Optical sectioning deep inside
live embryos by selective plane illumination microscopy,” Science 305, 1007–1010 (2004).

[5] Preibisch, S., Saalfeld, S., Schindelin, J., and Tomančák, P., “Software for bead-based registration of selective
plane illumination microscopy data,” Nature Methods 7, 418–419 (June 2010).


	INTRODUCTION
	DESIGN
	USAGE
	CONCLUSIONS

