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ABSTRACT

Single Plane lllumination Microscopy (SPIM; Huiskenal., Nature 305(5686):1007—1009, 2004) is an emerging micro-
scopic technique that enables live imaging of large bi@algipecimens in their entirety. By imaging the living bigilcal
sample from multiple angles SPIM has the potential to ahisetropic resolution throughout even relatively large duj-

ical specimens. For every angle, however, only a relatishbtlow section of the specimen is imaged with high resoiyti
whereas deeper regions appear increasingly blurred. kr dodproduce a single, uniformly high resolution image, we
propose here an image mosaicing algorithm that combinesaftéhe art groupwise image registration for alignmentwit
content-based image fusion to prevent degrading of thelfimage due to regional blurring of the input images. For
the registration stage, we introduce an application-$igegrioupwise transformation model that incorporates page as
well as groupwise transformation parameters. We also p@paew fusion algorithm based on Gaussian filters, which is
substantially faster than fusion based on local image pytrd/e demonstrate the performance of our mosaicing method
on data acquired from living embryos of the fruit fiyyosophila, using four and eight angle acquisitions.

Keywords: Groupwise image registration, single plane illuminatioitnmscopy, image restoration and enhancement,
three-dimensional mosaicing

1. INTRODUCTION
1.1 Biological Background

Microscopic imaging of developing biological samples,sas embryos, with sufficient spatial resolution to distisgu
individual cells throughout the sample volume and with egiotemporal resolution to follow morphogenetic events occu
ring during development is important for understandingefalopmental processes. Single Plane lllumination Muwpyg
(SPIM)! is an emerging technique that enables live imaging of lgpgeisens in their entirety. By imaging the living sam-
ple from multiple angles (views) SPIM has the potential thieee isotropic resolution throughout even relativelygéar
specimens. It also offers a number of other advantages @aitibnal confocal microscopy approaches, namely rediuce
photo damage to the sample and high acquisition frame r&ee€G8D-based detection system. The necessary prerequisite
for realizing the full potential of SPIM for biological imaggy, however, is an image mosaicing stage that achievegsprec
registration of the data acquired from multiple angledpfeed by proper fusion into a single isotropic 3D volume.

We use SPIM recordings drosophila embryogenesis to test the performance of the algorithmsave teveloped
for this purposeDrosophila embryo is a premium model system for studying animal emhkcyprocesses. An extensive
reverse genetic toolkit allows us to specifically mark gahanatomical structures such as cell nuclei in the embryo as
well as generate specific gene expression reporters foremgyig the fruit fly genome. We intend to map, using SPIM, the
dynamic spatial and temporal changes in gene expressiaifisipe for all important developmental genes with celiula
resolution in the context of the entire intact developingogyn. Our algorithms for SPIM mosaicing will be crucial to
efficiently process these systematically acquidedsophila embryo recordings, but will be also applicable for procagsi
of any multi-view SPIM image data of other biological speeims.
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Figure 1. Schematic drawing of SPIM acquisition setugft: Frontal view,right: lateral view. The specimer¢osophila embryo) is
embedded in agarose gel protruding from a glass capillary. The cgpglantated so the light sheet emitted by a laser illuminates the
specimen at different angles. Emitted fluorescent light is detected I§Cadamera. The rotation angle of the specimen is known, but
the precise orientation of the (invariant) rotation axis is not. Likewise, thelaional position of the capillary is shifted for each angle
to bring the specimen into the camera field of view.

2. METHODS

2.1 Imaging

SPIM, schematically illustrated in Fig. 1, achieves ogtgstioning by focusing the excitation laser into a thirhtigheet
that penetrates the living sample embedded in an agarosmdeduspended by gravity in a water filled chamber. The
objective lens is arranged perpendicular to the axis ofmihation and so the laser illuminates only the imaged pldne o
the specimen, which the lens is focused on, thus minimizhmgg@bleaching and laser damage of the living samples and
allowing for very long time-lapse recordings. Two-dimemsil images of emitted fluorescent light are captured by a CCD
camera and discretized with a dynamic range of 12 bits. Theotisa CCD camera enables a very fast acquisition rate
that is important for capturing dynamic developmental évémliving embryos. In order to acquire 3D image stacks, the
sample is moved perpendicular to the light sheet, in our caisEerements of 2 um.

The SPIM instrument can, in principle, achieve an isotropigh resolution along x, y and z axis allowing for the first
time imaging of large three-dimensional specimens in tefirety. In order to achieve an isotropic resolution umifty
across the sample’s 3D volume in all three dimensions, ieteasary to rotate the sample and record image stacks for the
same specimen from different angles (usually 8 to 12).

We used a Zeiss 20x/0.5 Achroplan objective to image a dpireldrosophila embryo expressing NLS-GFRhat
marks all nuclei in the specimen. We acquired 4 and 8 anglesdoh time-point in the extended time-lapse recording,
spaced by 90° and 45° respectively. To minimize the morgiio¥d changes during multi-view acquisition of a single
time-point we slowed down the development by reducing teatpee to 18°C using a Peltier-cooled sample chamber. For

*NLS = Nuclear Localization Signal; GFP = Green Fluorescent Protein



Figure 2. Slices from an 8-angle SPIM acquisition (after co-registratihg native image resolution wasr3 x 0.73 x 2 um pixel
size, which was resampled €073 um isotropic resolution after registration. The varying regions of shadpbturred image data are
clearly visible here. The images were acquired with 45 degree increpbemtsote that the rotation was out of plane with respect to the
slice orientation shown here.

registration and fusion shown in this paper we selectedgestime-point just before gastrulation when the embrycstsia
only of a single closed layer of densely packed epitheliisceurrounding the inner yolk. This stage Dfosophila em-
bryogenesis therefore defines a comparatively complicgagdtration task during the whole development as the spati
is highly uniform and provides only minimal global struasrfor the registration.

Image samples from an 8-angle acquisition ddrasophila embryo are shown in Fig. 2. It is apparent that each of
these image stacks shows only part of the embryo in detagehadue to scattering of light sheet and emitted light ke th
sample itself. This effect complicates the registratiothef views and requires an advanced scheme for image fusion to
create the final isotropic image.

2.2 Image Registration
2.2.1 Registration Cost Function

The registration was implemented using the stack entropylasity measure used in the “congealing” algorithm by
Learned-Miller? In short, this measure calculates the entropy of pixel sitas over all views at each pixel, which is
then summed over all pixels. By minimizing the total entrogiynultaneous registration of the entire group of images ca
be achieved.

2.2.2 Application-Specific Two-Tier Transformation Model

As the transformation model, we use a novel, applicatia@esic model with per-image as well as groupwise transforma-
tion parameters. In general, each image relates to the inagpendent reference coordinate space by a rigid caatedin
transformation (Fig. 3). However, by construction of thdNimaging setup, the following observations can be made
priori:

1. There is only one rotational degree of freedom (rotatibthe specimen). The precise rotation angle is known for

each of the acquired views, based on the precise stepper thatdurns the capillary with the embedded specimen.

2. The precise orientation of the capillary rotation axis@ calibrated and therefore unknown, but constant for all
views, thus leading towo transformation degrees of freedom shared by all images.

3. The specimen translation is different for each view, duetadjustment of the camera field of view, leadinghree
independent degrees of freedom for each of the views.

For thei-th view, its coordinate transformatidh; is parameterized as
Ti(miayiazi;a76; q)i ) :R?’HR37 (1)
~—~
const.

wherex;, y;, andz; are the three translational parameters for imageand s are two angles that define the orientation of
the acquisition rotation axis; anbj; is the known view angle for view.
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Figure 3. lllustration of the groupwise transformation model. An imagepeddent reference coordinate space relates to each of
the input images (here: eight) by a separate coordinate transformatjothroughT7. The transformations are parameterized and
constrained to leave the reference space effectively unmoved. 3éertdetails.

The resulting transformation model for eight views, theref has a total of 26 degrees of freedom, compared with 48
degrees of freedom for independent rigid transformatidta. four views, the number of parameters in the application-
specific transformation model is 14, compared with 24 foepehdent transformations.

2.2.3 Optimization Strategy

The parameters of the combined transformation model thainmie the stack entropy image similarity measure are de-
termined by an alternating iterative optimization schermibe per-image translational parameters are optimizedyusin
gradient-based line search algoritArithe orientational parameters of the rotation axis are eted using a hill climb-

ing scheme similar to the algorithm proposed by Studhodinal.* At each level of a multi-resolution schedule, both
optimization stages are performed alternatingly until mdHer improvement can be achieved. In parallel, the réisolu

of the image data is incrementally increased in a multiesb@rarchy, starting at 8 times the original pixel size, dda

the original image resolution.

2.3 Content-Based Image Fusion

An effective fusion algorithm of the aligned image stackstrensure that each angle contributes to the final fused wlum
only useful sharp image data acquired from the area of th@leaciose to either the entry point of the light sheet or the
detection lens, ideally both. The influence of the blurredspaf each single view caused by illumination and detection
light scattering through the sample must be minimized, tvhi@kes simple image averaging unsuitable (see Figs. 4 and 5)

Following an idea developed by Goshtashwe fuse the co-registered images according to their lodatrimation
content, and thus aim to overweight the “sharp” versus tHerfed” parts of the individual images. One method to
approximate the local information is by evaluating the epyrin the local environment of each pixel in each vievand
use those values as weighing factors for the averaging oy @vaividual pixel over the registered volume. For everygbi
of imagel,, the regional entropy/,, (z, y, z) is computed in a local pixel neighborhood. The resultingélipixel is then
computed as the weighted average of the pixels in the otigimeges, each weighted with the regional entropy. As even
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Figure 4. Two identical planes near the surface of the embryo in the sxfaged by simple averagintpp left) and weighted by local
image entropytop right). The entropy-weighted fusion yields noticeably higher contrast coedpaith the unweighted average image,
so that the nuclei are more easily distinguished. Higher contrast is atdionced by the line profile plotsbpttom) along the yellow
lines in both images.

Figure 5. Volume renderings of fused SPIM data from 4 angles (aghBaangles (c,d) using unweighted averaging and entropy-based
fusion. High image intensities are rendered in yellow, whereas lower itiesnare rendered in blue. The 4-angle renderings reveal that
in areas where none of the views has perfect data the averaging $a¥leeen more contrast (blue stripes) while the entropy fusion (b)
is able to preserve an almost constant contrast. For the the eight ataglamaeighted averaging suffers from a high amount of blurred
data in each pixel whereas the entropy-based fusion is able to redueéfe¢bissubstantially



Figure 6. Steps of the fast content-based fusion algorithm illustrated odiffgcent angles (top row: 0°, bottom row: 180°). a) One
of the original SPIM images. b) Image after first Gaussian smoothin§qoared difference between original and smoothed image. d)
Smoothed difference image. e€) Smoothed difference image for this,atigded at each pixel by the sum of the smoothed differences
over all angles. This image quantifies the local image information relatitketset of images from all angles. f) Original image
weighted at each pixel with the relative information in €). Images g) thrdughow the corresponding results for a second angle of the
same acquisition.

the blurred image regions are not completely uniform (&lge to image noise and illumination gradient), they, toe@gha
entropies larger than zero. To further suppress thesenggize emphasize the regional entropy weight by taking H into
the exponent:

3, 100He @A (2, y, 2)
Ifused(m'/ Y, Z) - Za ]_OOHQ (z,y,2) ’ (2)

The regional image entropy is implemented using a discrédmsity histogram. The number of histogram bins and the
size of the spatial window in which the regional entropy impaited are adjustable parameters of the entropy compuitatio
In order to determine the optimal parameters, Goshtashyosexl to apply an optimization scheme that maximizes the
global image entropy. Due to the staggering amount of dag&PiiM acquisitions, such an optimization approach is not
feasible here. Instead, we applied Goshtasby’s approaatsinall subvolume of the data once to determine acceptable
parameters tuned for our type of images. This yielded a winsize of193 pixels and 256 histogram bins, which may be
suboptimal for other types of image data and should be ésitelol independently for other applications.

2.4 Fast Implementation of Content-Based Fusion

Compared with the two-dimensional 640x480 pixel imagesdusy Goshtasby, our images are rather large in size: the
cropped, registered, and reformatted images from the &amgjuisition used in this paper have a size of 359x379x773
pixels, which is about two orders of magnitude (and one dsiwar) larger. Computational performance therefore besome



Figure 7. lllustration of truncation artifact that is removed by contenethamage fusion. (a) Due to the truncated acquisition of one
of the eight views, volume rendering the result of simple averaging steoualear artifact in the shape of an ellipse. (b) The artifact
is removed by the content-based image fusion, due to the low informatiterdoof the image region in the truncated view near the
truncation surface.

Figure 8. Comparison of image contrast using (a) unweighted averadinentropy-based fusion, and (c) fast fusion using Gaussian
filters. Note the improved sharpness of the nuclei in (b) and (c). Nadeaglsin in (b) and (c) the effective removal of the view truncation
artifact that is visible as a near-vertical boundary in (a).

an issue, and we now propose a computationally efficientcaqupation algorithm to perform the content-based image
fusion. In a first simplification step, we note that the lodatrepy in an image region is monotonically related (via the
log function) to the variance of the pixel values in that cegiif they are normally distributed. Unfortunately, cortipg
the local regional variance is still computationally expiga. Instead, we implement an approximation to the regiona
variance by convolution with a Gaussian kernel, followedabpixel-wise squared difference operator, followed by a
second Gaussian kernel convolution:

Wa = Go, * (Lo = (Go, % 1a))? 3)

Using a recursive implementation of the Gaussian filiethe InsightToolkit bit t p: / / www. i t k. or g), we arrive at an
implementation that runs in constant time, regardlessefitter kernel size. The fused image is then easily computed a

Z Wa(xvyvz)la(x7yaz)
Trysed (T, Y, 2) = & . 4
f d( Y ) Za Wa(l’,y72ﬁ) ( )

The processing steps of the fast fusion algorithm as ittistf in Fig. 6 for two views of the 8-view SPIM data.

3. RESULTS

The effectiveness of the image registration algorithm psagl herein is visually apparent from the volume-rendeoead-c
posite image stacks in Fig. 5. This figure and Fig. 4 also le@monstrate the need for content-based image fusion,
as opposed to simple image averaging. As a beneficial sideteffontent-based fusion also eliminates artifacts in the
combined image that would otherwise arise from views thatvaequired with a reduced scanning depth, thus truncating
the embryo (Fig. 7).



The results of the fast fusion approach using Gaussiansfilez compared with those of the entropy-based fusion
and simple averaging in Fig. 8. The two content-based fusiohniques produced visually similar results, and they bot
clearly outperformed simple averaging. However, entrbpged fusion using 19x19x19 pixel neighborhoods took about
17 hours of computation time on a single CPU (single core omtat Core2 Quad Xeon at 1.8 GHz). Compared with
that, the fast fusion algorithm based on Gaussian filiers= 42 pixels, 0o = 88 pixels), took only about 15 minutes on
the same CPU, albeit at the cost of either larger memory copsan or more disk 1/O.

4. DISCUSSION

To the best of our knowledge, this paper makes the followargributions: (1) We have described the first integrated-alg
rithm for mosaicing of SPIM images acquired without caltidarotation axis. Our method is also the first application of
a groupwise registration method to volumetric image masgiim general. (2) We have introduced an application-djeci
transformation model for the groupwise alignment of SPINhdahich separates groupwise from per-image transforma-
tion parameters, thus constraining the search space andimgdhe number of degrees of freedom for optimization. The
application-specific transformation model also restticesoverall alignment of the views to transformations thatghys-
ically possible (e.g., such that rotate all views aroundstimae, constant rotation axis) and effectively prohibigrahents
that are not physically plausible. (3) We have introducealsa &lgorithm for image fusion based on local information-co
tent, which is implemented using efficient Gaussian filgand is about two orders of magnitude faster than a comgarabl
algorithm based on local image entropy.

In summary, we have developed an image mosaicing technig&PiM images that uses groupwise image registration
with an application-specific transformation model and eatthased image fusion. Groupwise registration succssfu
aligned the images acquired from different angles. Corttesed fusion effectively identified the information-gamg
areas in each of the partial images, substantially redukgdny as compared with simply averaging of the co-regéesle
images, and removed volume truncation artifacts. The tiagumages appear suitable for further analysis, suchgs se
mentation and tracking of single cell nuclei. In future asdgions, the successful suppression of truncation atsfay the
content-based fusion will enable us to purposely reducertage acquisition depth of each view, which in turn will eleab
increased numbers of views and/or increased temporalutesolith a larger number of time points.
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